Вместо слова «содержится» решили ставить между числами знак :.

Например. Выражение «в восьми содержится два четыре раза» запишем так:

$$8:2=4$$

Действие, которое мы записали этим знаком, называется **действием деления**.

Поэтому пример можешь прочитать и так: восемь разделить на два получится четыре.

Задание 30. Вернись к **заданиям 27**, **28**, **29** и запиши соответствующие примеры на деление.

Задание 31. Сделай иллюстрацию к при-меру **14:7 = 2**.

Задание 32. Запиши примерами.

1. Восемь раздели на две равные
группы.
2. Раздели десять по два.
3. Сколько пят рок в десяти?
4. Четыре разделить на два.
5. Шесть разделить на три.
6. Сколько троек в девяти?
7. Шесть разделить на два.
8. Сколько четв рок в восьми?

Запомни!


Дети часто путают слова «делимое» и «делитель». Чтобы избежать этого, обратите внимание вашего малыша на суффикс «тель». Учи**тель** тот, который учит, строи**тель** тот, который строит, дели**тель** тот, который делит.

Задание 33. Сделай иллюстрации к примерам и вычисли результаты. Прочитай примеры пятью способами.

$$9:3=$$

Задание 34. Сделай иллюстрации к примерам и вычисли результаты. Прочитай примеры пятью способами.

Задание 35. Сделай иллюстрации к примерам и вычисли результаты. Прочитай примеры пятью способами.

Частные случаи деления

Так же как и в умножении, в делении есть несколько случаев, которые легко запомнить и которыми удобно пользоваться.

1. Сколько будет 8: 1? Рассуждаем. 8 яблок мы делим на одного человека. Сколько яблок ему достанется? Конечно же, все 8! Значит, при делении числа на единицу получается то же самое число.

Запишем формулу:

2. Теперь разделим 8 на 8. Рассуждаем. 8 яблок мы раздаём восьми друзьям. По скольку яблок получит каждый из них? По 1! Значит, при делении числа на себя самого получается 1.

Запишем формулу:

3.) А сколько будет 0:5? Рассуждаем. У нас нет яблок, но мы почему-то хотим разделить их между пятью друзьями. По сколь-

ку же яблок достанется каждому? Да ни по скольку, то есть по 0.

А на 0 делить вообще нельзя. Почему? Узнаешь в старших классах. Сейчас просто запомни.

Запишем формулы:

$$0: a = 0$$
 $a > 0 <$

4.) Теперь разделим 60:10. Рассуждаем. Сколько десятков уместится в шестидесяти? Шестьдесят — это 6 десятков. Столько и уместится — 6 десятков.

На 10 делятся только числа, оканчивающиеся на 0. Они называются **круглыми**. Чтобы разделить число на 10, нужно зачеркнуть у него столько ноликов, сколько ноликов на конце у 10, т.е. один. 60:10=6

Задание 37.* На сколько нулей должно оканчиваться число, чтобы оно делилось на 100? А на 1000? Сколько ноликов нужно будет зачеркнуть?

Задание 38. * Вычисли результаты.

- 5000 · 10
- 50 · 100
- 5000:10
- 5000:100
- 5000:1000

- 100 10
- 100 100
- 10000:10
- 10000:100
- 10000:1000

Задание 39. Вычисли результаты.

- 8 · 1 =
- 9:1=
- 4:4=
- $0 \cdot 4 =$
- 1 9 =

- 80:10=
- 60:10=
- 60:6=
- $10 \cdot 4 = \Box$

Задание 40. Вычисли результаты.

- 0:2=
- 1 7 =
- 5 · 0 =
- 9:9=
- $7 \cdot 0 = \square$

- $9 \cdot 10 =$
- 30:10=
- 10 · 3 =
- 20:10=
- 10 · 0 =

Чётные и нечётные числа

Очень часто в повседневной жизни тебе будут встречаться два понятия: чётные и нечётные числа. Что же это такое?

Запомни!

Чётные числа делятся на 2. Они оканчиваются цифрами 0, 2, 4, 6, 8.

Например: 4, 10, 18, 136.

Нечётные числа не делятся на 2. Они оканчиваются цифрами 1, 3, 5, 7, 9. Например: 9, 13, 51, 257.

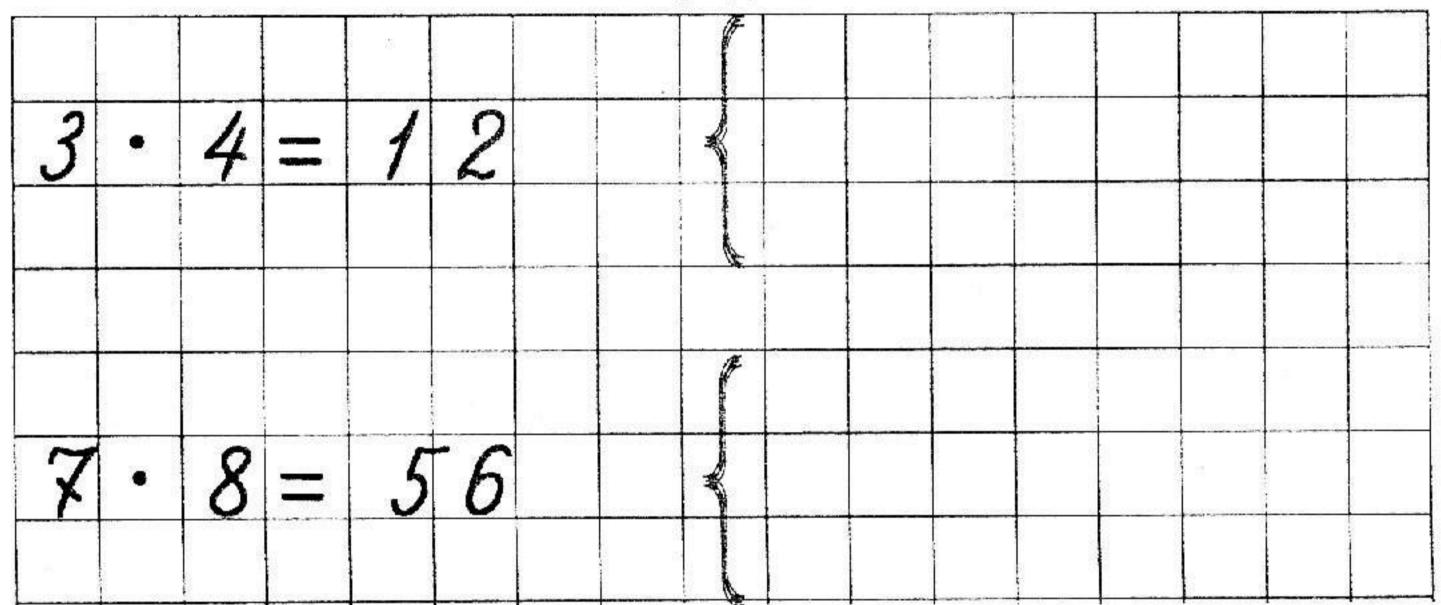
Задание 41. Обведи в кружок чётные числа.

7, 24, 8, 15, 39, 90, 2, 21, 286, 535, 63, 62, 74, 6, 18, 57, 82.

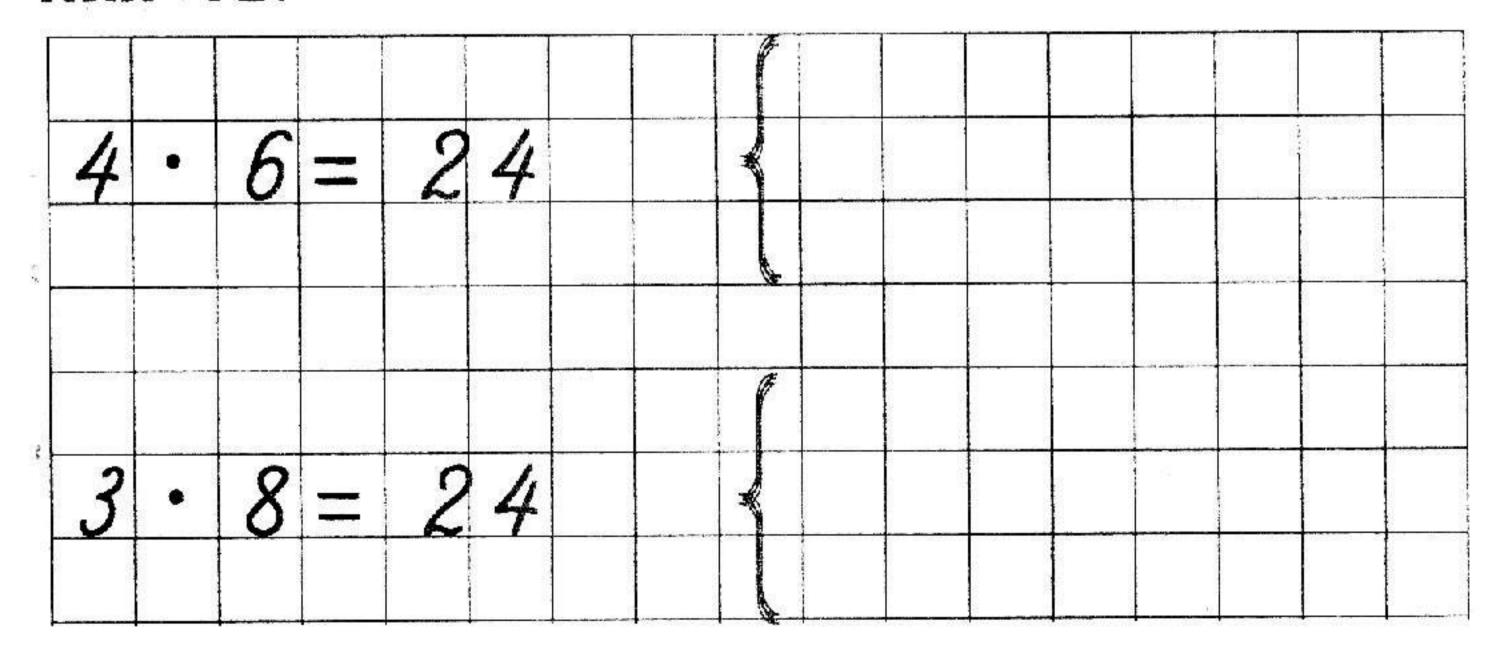
Задание 42. Зачеркни нечётные числа. 9, 28, 10, 27, 39, 84, 1, 23, 353, 644, 22, 97, 36, 8, 3, 135, 78.

Задание 43. Запиши числа в два столбика. 1, 2, 13, 16, 17, 22, 32, 35, 40, 43, 49, 58, 63, 62.

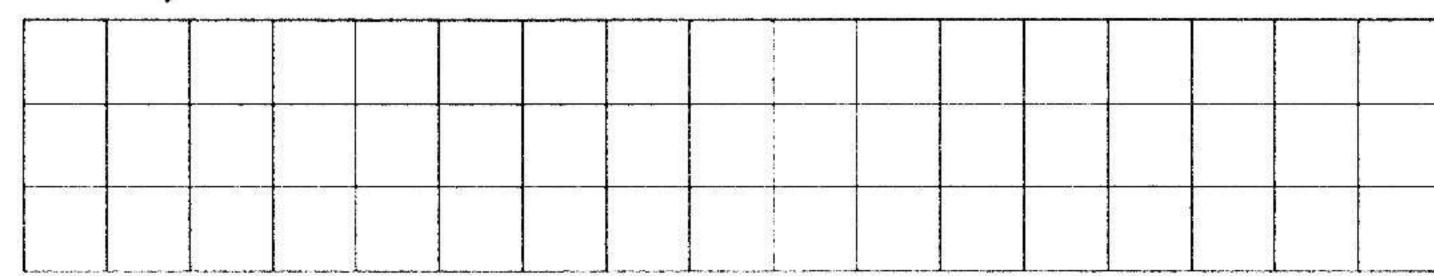
Yëmu	ble W	cna	He	iëmu	se 1	ШC	ια
		-					
							20

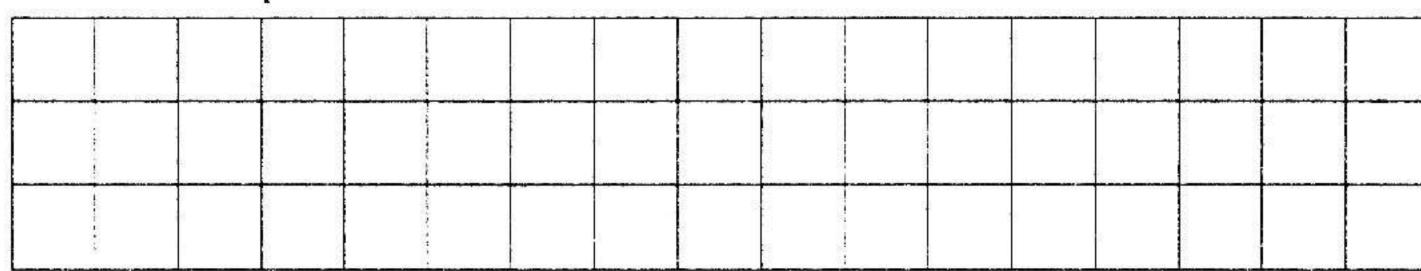

Задание 44. Допиши каждому числу последнюю цифру так, чтобы число оказалось нечётным.

1___, 2___, 3___, 4___, 5___, 6___, 7___, 8___, 9___, 10___, 11___, 23___, 58___.


Задание 45. Допиши каждому числу последнюю цифру так, чтобы число оказалось чётным.

Задание 46. Запиши по образцу.


Образец: 2·3=6 {6:2=3 6:3=2

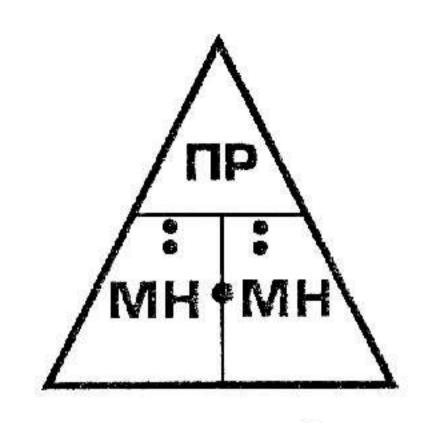

Задание 47. Запиши по образцу из задания 46.

Задание 48. Запиши все чётные числа, которые больше 20 и меньше 31.

Задание 49. Запиши все нечётные числа, которые меньше 100 и больше 88.

Как найти неизвестный множитель

Ты, наверное, уже понял, что умножение и деление (так же как сложение и вычитание) являются взаимообратными действиями. Это поможет находить неизвестные компоненты таких действий.


Например: $6 \cdot a = 30$

Сколько раз нужно повторить 6, чтобы получилось 30? Узнать, сколько шест рок содержится в 30, нам поможет действие деления. 30: 6 = 5.

Значит, a=6. $6 \cdot 5 = 30$

Запомни!

Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.

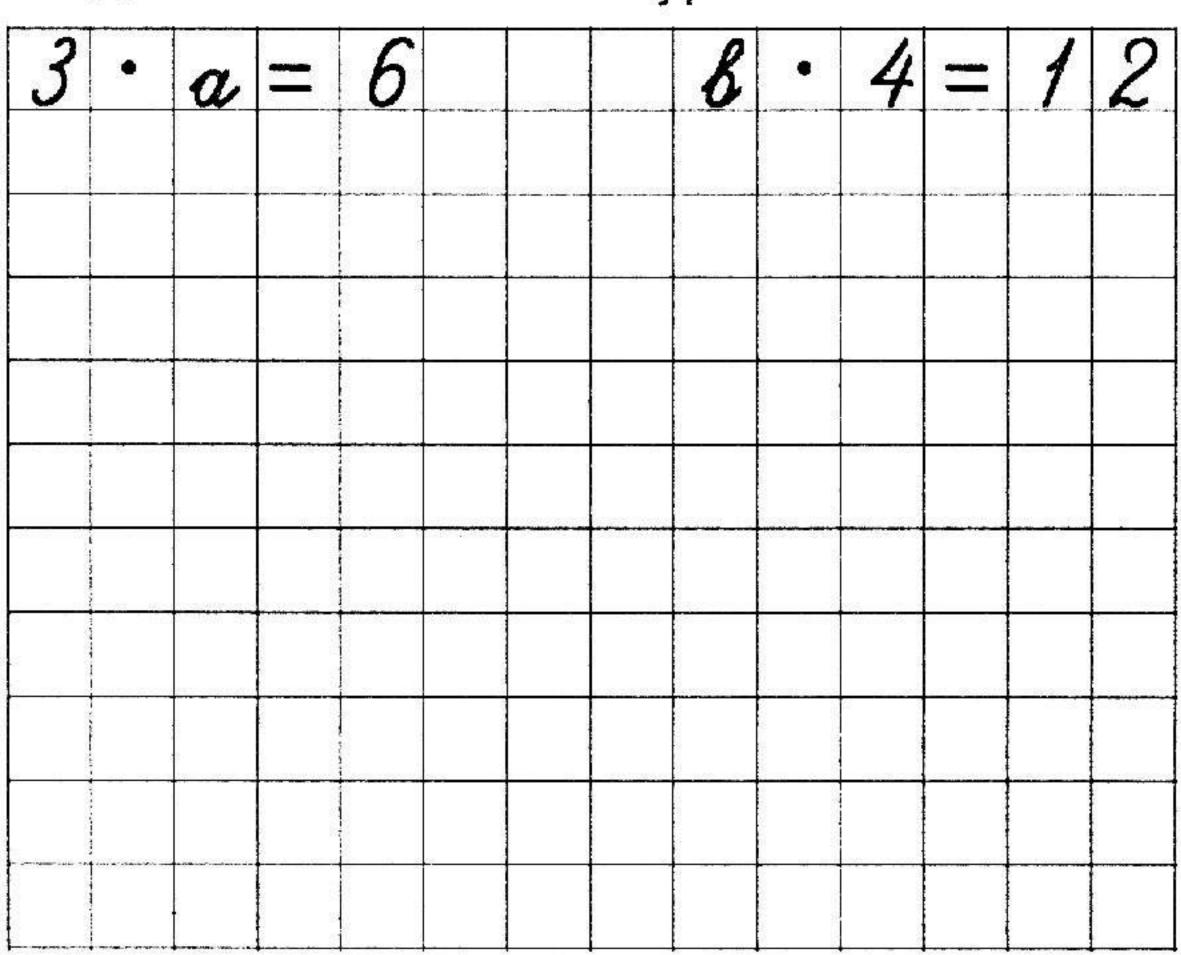
Выучить правило поможет треугольник. Это домик для компонентов действия умножения. Наверх поселим самое большое число — произведение. Внизу разместятся множители.

Между множителями поставим знак умножения. А под произведением — знаки деления. Теперь, чтобы вспомнить, как найти неизвестный множитель, закрой пальчиком этот множитель.

Чтобы записать неизвестный компонент действия, обычно используют буквы латинс-кого алфавита.

$$8 \cdot b = 16$$

$$b = 16:8$$


$$b = 2$$

$$8 \cdot 2 = 16$$

$$16 = 16$$

Ответ:
$$b = 2$$

Задание 50. Реши уравнения.

Задание 51. Реши уравнения.

C	•	2	8			4	•	x	1	6
										-1
					35 1001 - 10					
				100 E						
										•

Задание 52. Реши уравнения.

3	•	4	=	9		m	•	7	=	2	1
											37
								155 TYAN TE			
											8

Задание 53. Запиши по образцу.

Образец: $2 \cdot 3 = 6$ $\begin{cases} 6:2=3\\ 6:3=2 \end{cases}$

7	•	6		4	2	
3	•	6	=	1	8	

Как найти неизвестные делимое и делитель

Теперь научимся находить неизвестные компоненты действия деления: делимое и делитель.

Нам опять поможет треугольник. Но заселим его другими жителями.

Верхнюю квартиру снова займёт самое большое число— делимое. Внизу будут жить делитель и частное.

Запомни!

Чтобы найти неизвестный **делитель**, нужно делимое разделить на частное.

Чтобы найти неизвестное **делимое**, нужно делитель умножить на частное.

Например:

$$16: b = 2$$

$$b = 16:2$$

$$b = 8$$

$$2 = 2$$

Ответ:
$$b = 8$$

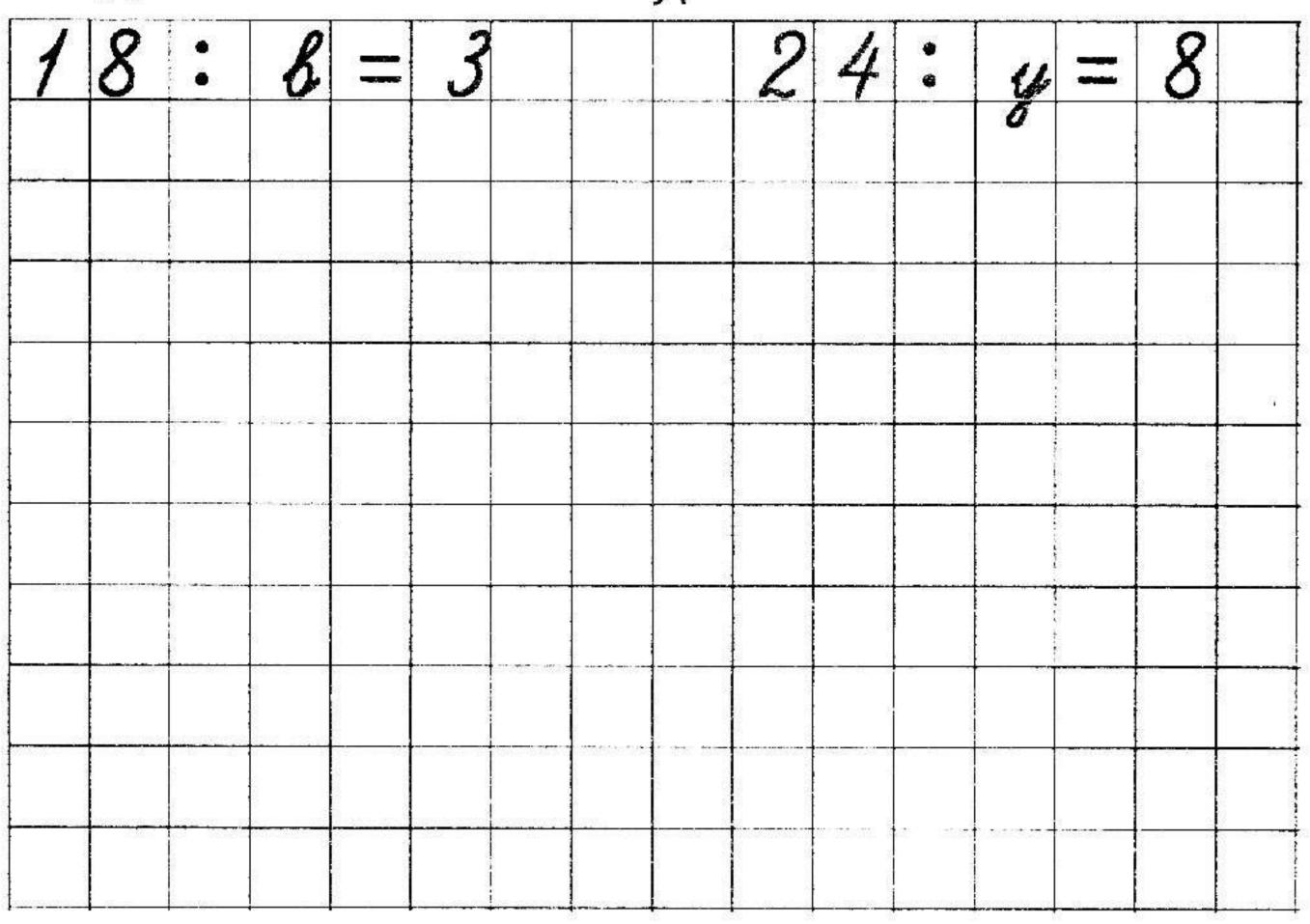
$$a:8=2$$

$$a = 8 \cdot 2$$

$$a = 16$$

$$16:8=2$$

$$2 = 2$$


А вот такое стихотворение помогало учить арифметику ученикам Древнего Рима (было это более двух тысяч лет назад!):

Деление покажет нам, Сколько раз одно число Содержится в другом. Делимым и делителем Прозвали мы участников, А результат полученный Мы частным назов м. Помножим мы делителя На новое, на частное Получим снова прежнее, Нам данное число.

Задание 54. Реши уравнения.

a	•	2	=	9			5	•	\boldsymbol{x}	 5			
											5		
						The state of the s							
											<u> </u>	<u></u>	

Задание 55. Реши уравнения.

Задание 56. Реши уравнения.

1	2		в	21.00A	2		C	4	3	4	
		3 22 OA II		1 1 1 1 1 1 1	5						

		77									

Задание 57. Реши уравнения.

m	•	5	1	0		2	0	•	a	_	4	9,00
											Į.	
1												
	50 <u>50 50</u>											
		<u> </u>										
	BONNON SOCIETI					27)						
						 						V
						 				0.000		
									50: 13:000 - e 31:1 e-			

Задание 58. Запиши по образцу.

Образец: $2 \cdot 3 = 6$ $\begin{cases} 6:2=3 \\ 6:3=2 \end{cases}$

9	•	4	3	6			
	¥155-2-1						
~		_ر	7	pare.			
*	•	5	5	5			

Таблица умножения, деления, признаки делимости и фокусы

Умножение 9, соответствующие случаи деления, фокусы, признак делимости на 9

Вообще-то в нашей исправленной и улучшенной таблице умножения мы должны выучить только один пример на умножение и один пример на деление (9х9=81, 81:9-9). Но в случаях умножения девяти столько интересного, что мы рассмотрим весь столбик. Итак...

9.2 = 18	18:9=2	18:2=9
9.3 = 27	27:9=3	27:3=9
9.4 = 36	36:9=4	36:4=9
9.5 = 45	45:9=5	45:5=9
9.6 = 54	54:9=6	54:6=9
9.7 = 63	63:9=7	63:7=9
9.8=72	72:9=8	72:8=9
9.9 = 81	81:9=9	

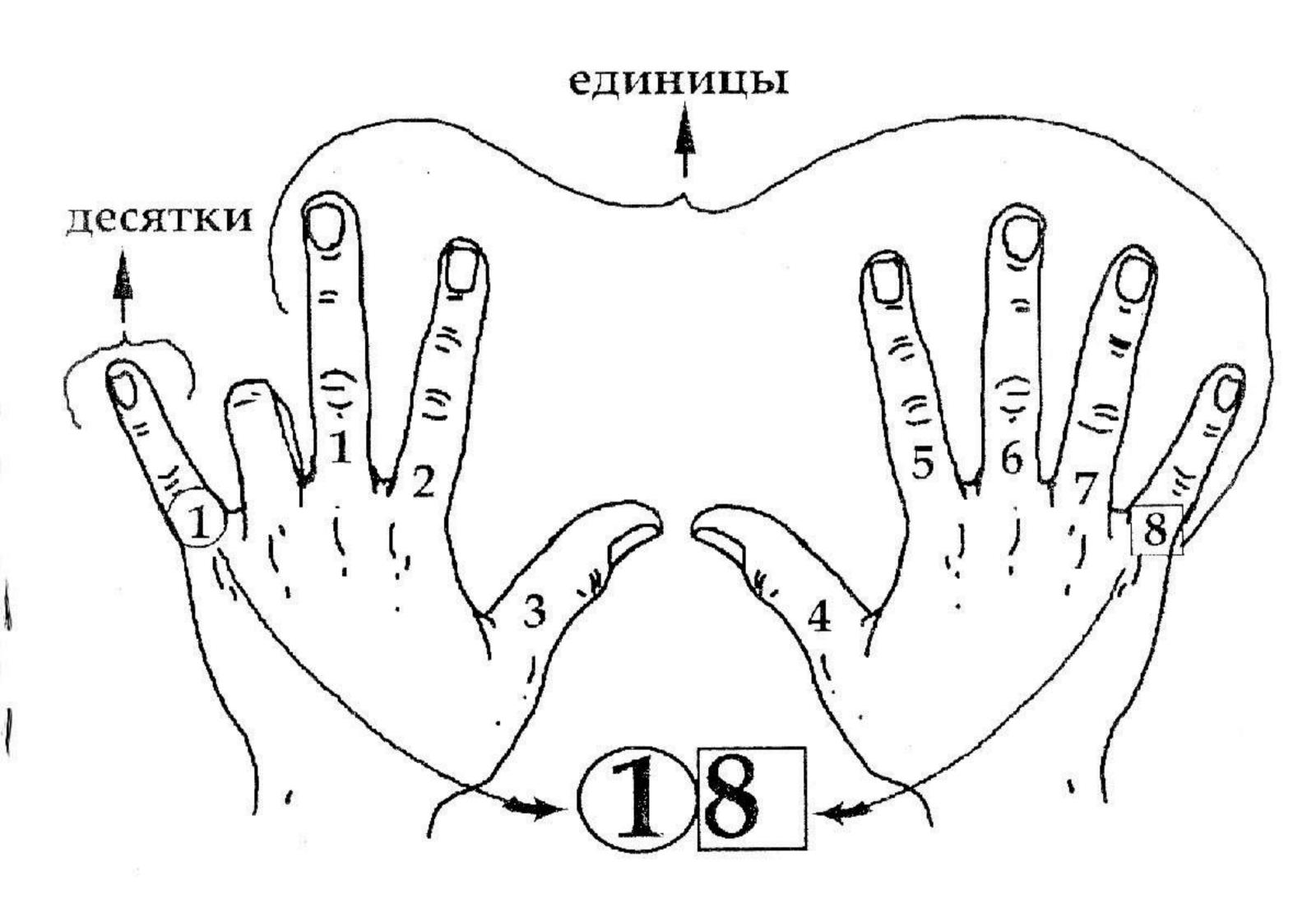
Вот то, что нам нужно выучить (и это вместо обещанных двух примеров!!!). Не расстраивайся. Таблица умножения девяти — сплошные фокусы и игры.

Фокус 1. Саша давно уже должен был выучить таблицу умножения девяти, но в последнее время по телевизору показывали столько интересных фильмов!

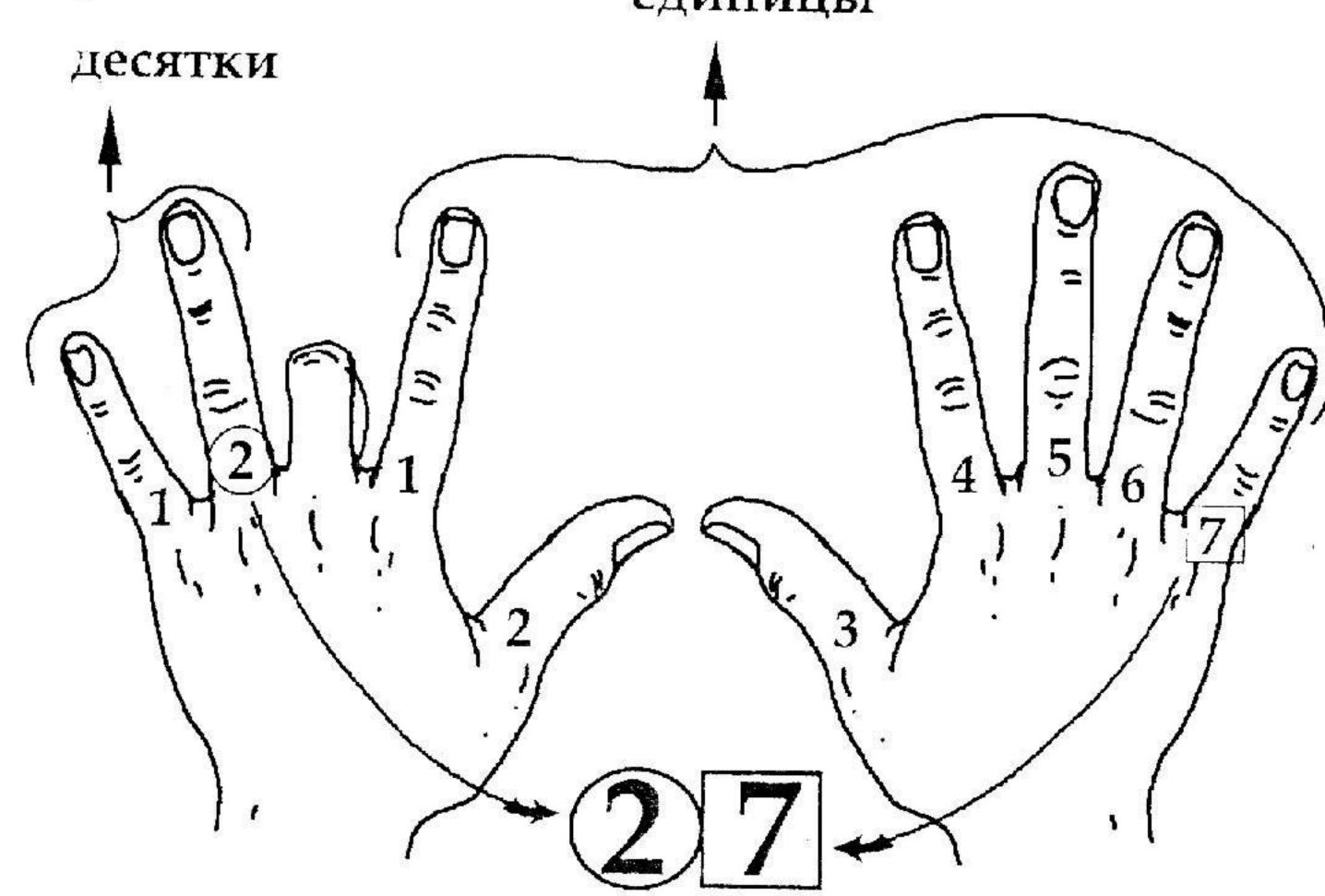
Настал день проверки. Светлана Викторовна положила перед ребятами листочки с примерами.

9.2=	1
9.3=	2
9.4=	3
9.5=	4
9.6=	5
9.7=	6
9.8=	7
9.9=	8

Мальчик с тоской взглянул на листок: «Ну, всё! Двойка обеспечена. Это сколько же примеров нам дали выучить?» Чтобы не сбиться, Саша стал вписывать в клеточки цифры.


9.2=	1 8
9.3=	27
9.4=	3 6
9.5=	4 5
9.6=	54
9.7=	63
9.8=	72
9.9=	81

«Целых восемь! Разве можно так мучить детей! Наверняка я ошибся! Начну-ка подсчитывать с конца». И Саша снова стал вписывать цифры в клеточки, но уже снизу. Потом, грустно вздыхая, незадачливый ученик самым первым сдал свой листочек.


А на следующий день... Светлана Викторовна рассказывала о результатах самостоятельной работы. Саша тосковал. «А больше всех меня порадовал Саша. Он сдал работу первым и не допустил ни одной ошибки. Ты получил пятёрку!» — произнесла учительница. «Вот так фокус!» — подумал Саша.

фокус 2. А теперь растопырь пальчики на обеих ладошках и положи их перед собой на стол.

Если ты хочешь умножить 9 на 2, загни второй пальчик (мы считаем слева направо). Слева будут десятки, справа — единицы. Результат 18.

Теперь умножим 9 на 3. Загнём третий пальчик. Слева десятки, справа единицы. Результат 27.

Дальше поэкспериментируй сам.

фокус 3. Посчитай, чему равна сумма цифр каждого из произведений.

$$9.2 = 18$$

$$9.3 = 27$$

$$9.4 = 36$$

$$9.5 = 45$$

$$9.6 = 54$$

$$9.7 = 63$$

$$9.8 = 72$$

$$9.9 = 81$$

Удивительно, правда: **сумма цифр** всех двузначных чисел, которые делятся на девять, **равна девяти**!

Теперь, благодаря этим фокусам, таблицу умножения и деления девяти ты запомнишь легко.

Например. Сколько будет 9 · 7?

Первый способ. Можешь пошевелить пальчиками.

Второй способ. Ты знаешь, что 7 умножить на 10 будет 70. Следовательно, 7 умножить на 9 будет меньше: 60 с чем-то. Сумма цифр произведения должна равняться девяти. Значит, 9·7=63 (6+3=9).

Третий способ. 7 умножить на 9 — это девять сем рок. Следовательно, мы можем от 70 (десять сем рок) отнять одну сем року. Получится 63.

Задание 59. Реши каждый из примеров тремя способами.

Задание 60. Посчитай девятками с 9 до 81 несколько раз. С каждым разом всё быстрее и быстрее.

Задание 61. Посчитай девятками с 81 до 9 несколько раз. С каждым разом всё быстрее и быстрее.

Задание 62. Зачеркни числа, которые не являются ответами таблицы умножения на 9. 27, 19, 16, 36, 9, 7, 18, 23, 33, 63, 45, 89, 81, 54, 73, 79, 72.

Задание 63. Запиши примеры из таблицы умножения на 9.

	1	1		220
			O	1
			\mathbf{O}	
 4				

· = 18

· = 45

- L = 63

Задание 64. Запиши к каждому примеру на умножение соответствующие примеры на деление.

$$9 \cdot 9 = \square$$

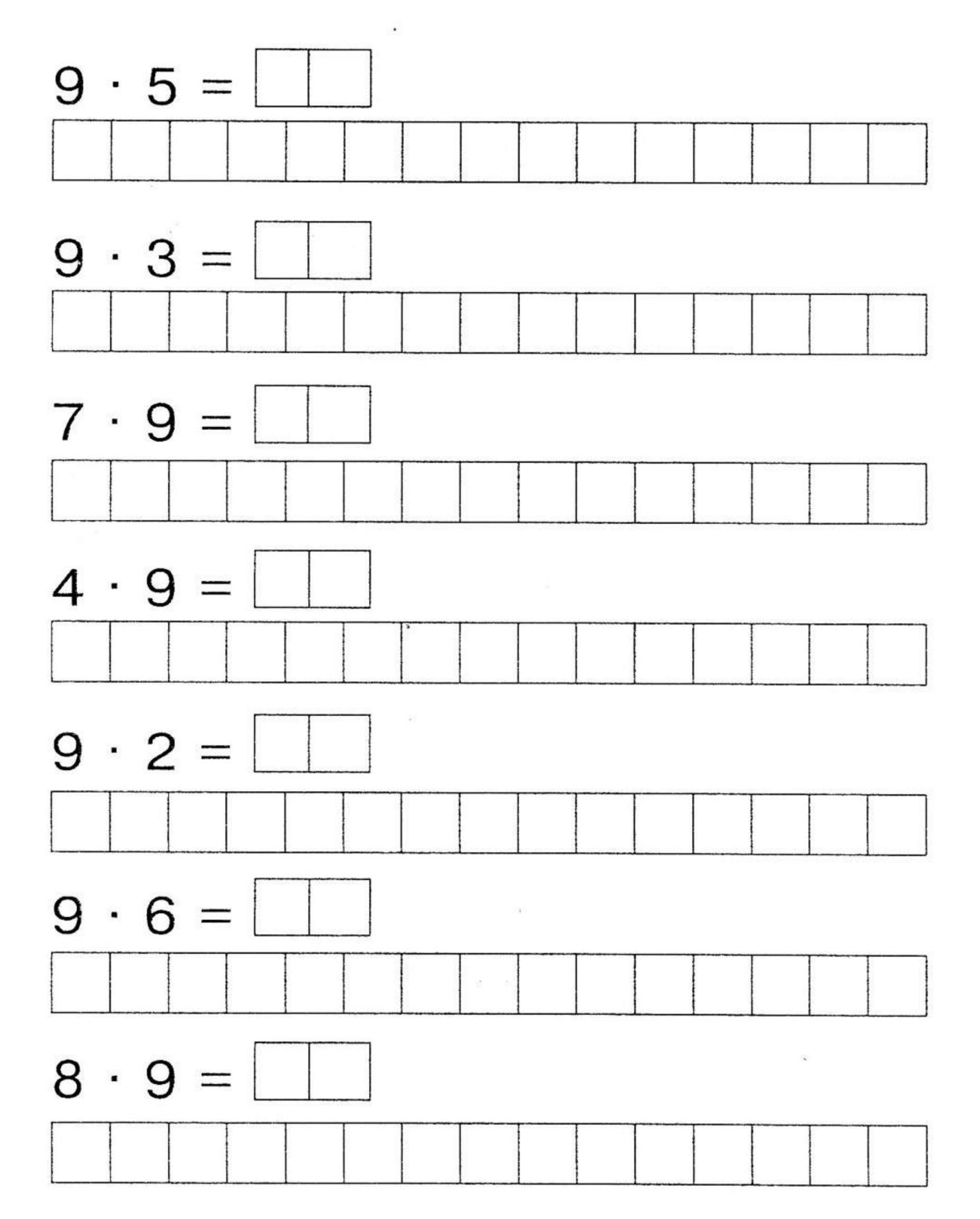


Таблица **умножения** на 9 наверняка уже неплохо запомнилась. К тому же ты всегда можешь воспользоваться любым из трёх способов. А как же быть с **делением**?

Например. Сколько будет 63:9? Сначала проверим, нет ли здесь ошибки или подвоха. Можно ли разделить это число на 9? 6+3=9. Можно.

Способ первый — самый правильный, но если ты ещё не очень хорошо запомнил таблицу — самый трудный. Рассуждаем: на сколько нужно умножить 9, чтобы получить 63. На 7. Проверяем: 9.7=63.

Способ второй. Положим перед собой ладошки и «наберём» 63. Для этого нам придётся загнуть седьмой пальчик.

Следовательно, 63:9=7. Проверяем: 9.7=63.

Способ третий. Результат деления двузначного числа на 9 больше на единицу, чем цифра, показывающая количество десятков в этом числе. 63. 7 на 1 больше, чем 6.

Значит, 63:9=7. Проверяем: 9⋅7=63.

Это в случае деления на 9. А как рассуждать при делении на другие числа?

Например. Сколько будет 63:7? Если сумма цифр делимого 9, то число делится на 9. 6+3=9. Следовательно, ответ 9!

А вдруг это число можно получить и с помощью других множителей? Из всех чисел, являющихся ответами таблицы умножения на 9, подобную опасность представляют, к счастью, только два числа: 18 и 36.

Выучи!
$$18 = 9 \cdot 2 = 6 \cdot 3$$
 $36 = 9 \cdot 4 = 6 \cdot 6$

Стишок:

Шестью шесть-

Тридцать шесть.

Значит, кроме 18 и 36, если сумма цифр делимого равна девяти, то частное будет равно девяти.

Задание 65. Посчитай девятками сначала с 9 до 81, а потом с 81 до 9 по несколько раз. С каждым разом всё быстрее и быстрее.

Задание 66. Реши примеры.

$$9 \cdot 4 = \boxed{}$$

$$2 \cdot 9 = \boxed{}$$

$$6 \cdot 9 = \square$$

Задание 67. Реши примеры.

$$9 \cdot 7 = \square$$

$$9 \cdot 5 = \square$$

$$9 \cdot 9 =$$

Задание 68. Запиши двумя способами, как при помощи умножения однозначных чисел можно получить 18 и 36.

Задание 69. Реши примеры.

Задание	70.	Реши	примерь	١.
AGENT AND BROOM AND RESERVED AND			1 Ipriliop	

18: | = 9

: 9 = 4

: 9 = 5

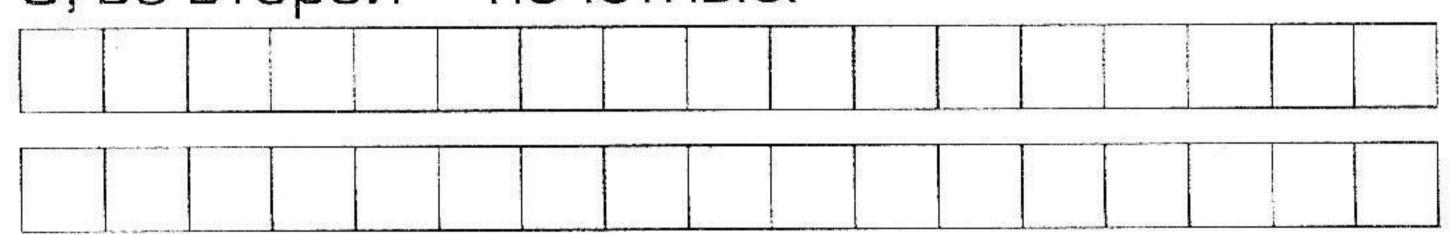
9 · _ = 72

 $9 \cdot \Box = 36$

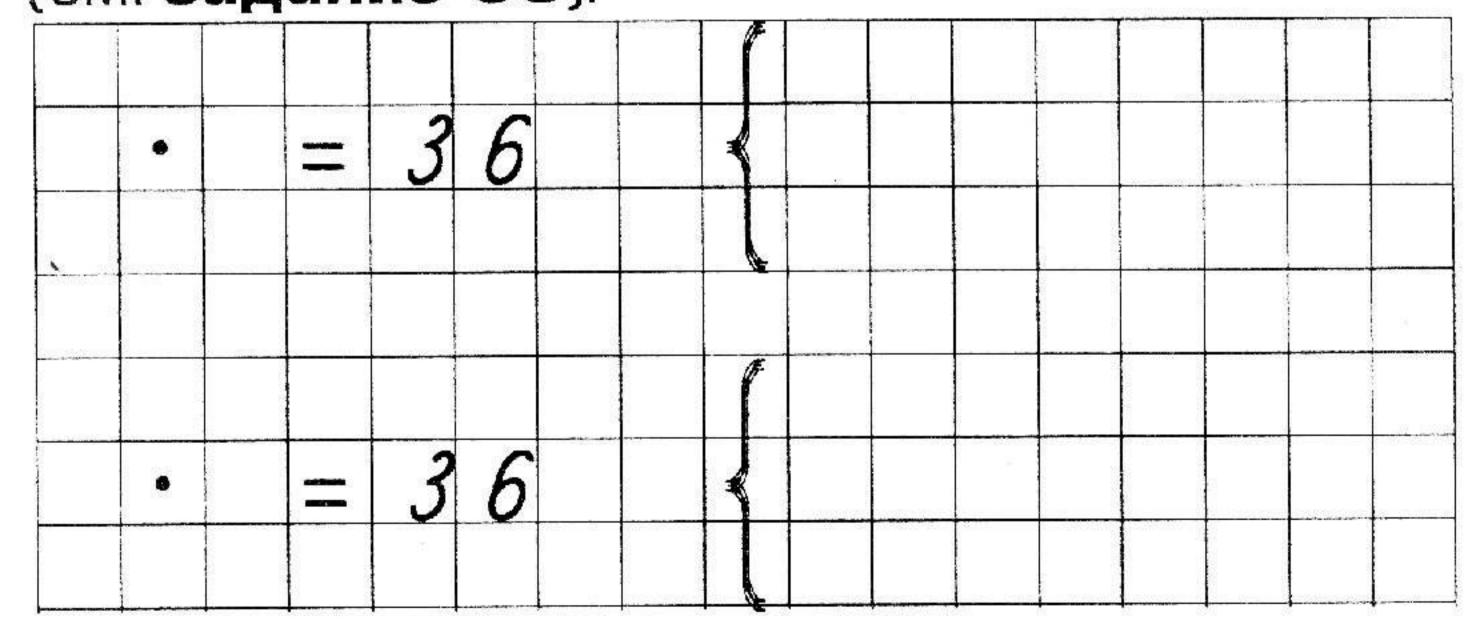
63 : __ = 9

: 3 = 9

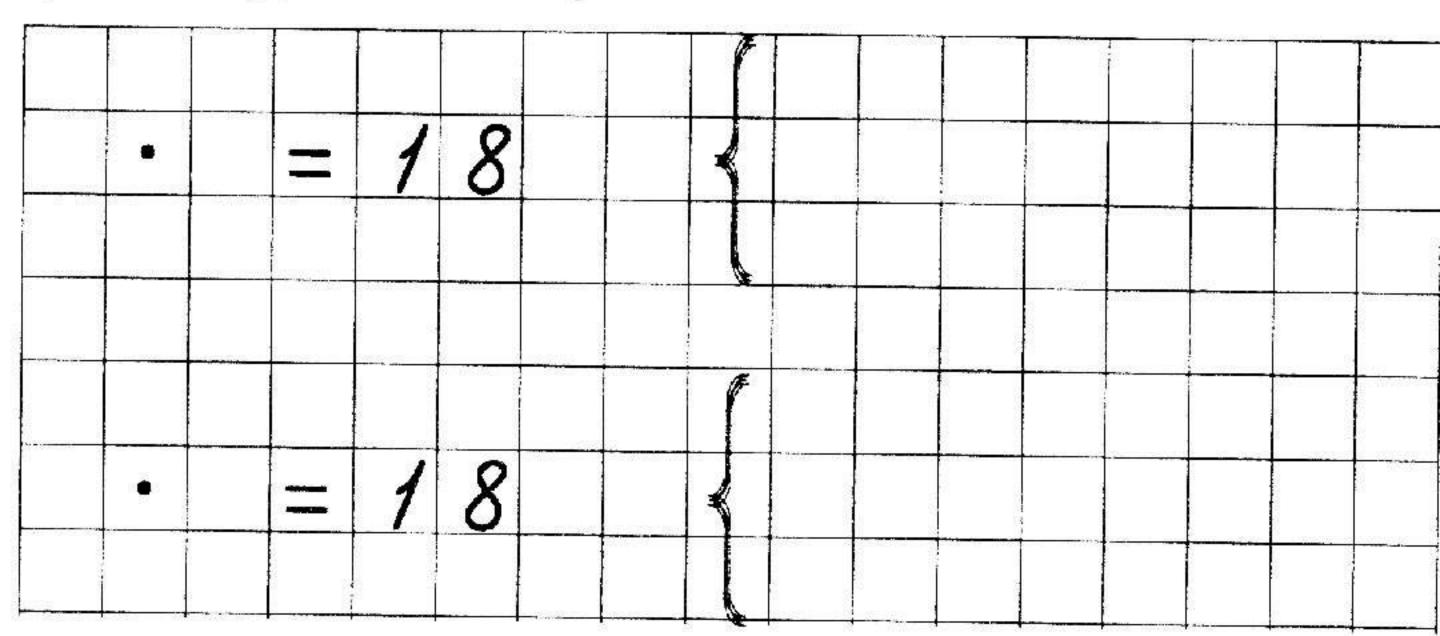
9 · _ = 81

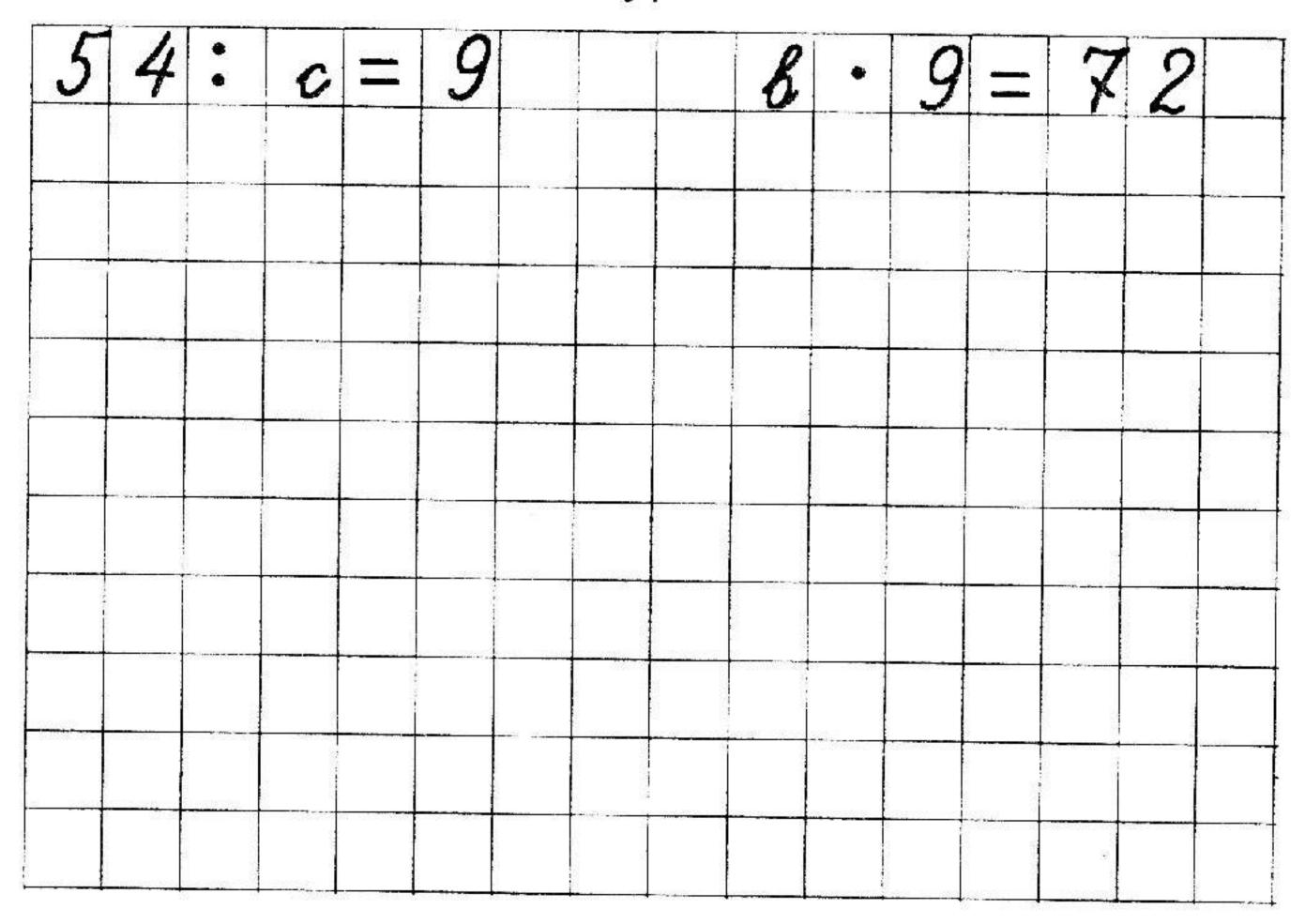

: 9 = 7

 $9 \cdot | = 18$


9 · 🔲 = 27

: 8 = 9


Задание 71. В первой строчке запиши чётные двузначные числа, которые делятся на 9; во второй — нечётные.


Задание 72. Запиши к каждому примеру на умножение по два примера на деление (см. **задание 58**).

Задание 73. Запиши к каждому примеру на умножение по два примера на деление (см. **задание 58**).

Задание 74. Реши уравнения.

Задание 75. Реши уравнения.

a	- 1	9	 4			9	•	x	 4	5	
				12						e e e e e e e e e e e e e e e e e e e	
					91. #1						
										en Nyara-Pad-at-ain-Passana	

Задание 76. Реши уравнения.

3	6	e	y	 6		a	•	8	6	4	
.											<u>.</u>
										- w- u to	

Видишь, как много интересного ты узнал об умножении и делении на 9. Но это ещё не всё!

Оказывается: о любом числе можно точно сказать, делится оно на 9 или нет. Это свойство называется признаком делимости, и обладают им немногие числа. А вот девятке и в этом повезло!

Запомни!

Признак делимости на 9

Если сумма цифр, составляющих число, делится на 9, то и всё число делится на 9.

Например. Делится ли на 9 число 567?

Складываем цифры, составляющие число. 5+6+7=18.

18 делится на 9. Значит, число 567 делится на 9.

Задание 77. Допиши в каждое число цифру таким образом, чтобы число делилось на 9. 5_6, __118, 75_4, 45_, 78_, 588_, 1_23, __791.